
Bachelor Thesis

DESIGNING AN INTERCONNECTION CONCEPT OF AN

ELASTIC COMPUTE CLOUD (EC2) ENVIRONMENT

WITH LOCAL NETWORKS VIA VPN

by

Bernd Hietler

Course of Studies: Informatik (Computer Science)
Matriculation Number: 370921

January 2009

Reviewer at the University: Dorothee Koch
Prof. Dipl.-Math., MSc in Computer Science
Stuttgart University of Applied Sciences

Reviewer at the Company: Aleksey Aristov
Company: Weiglewilczek GmbH

ABSTRACT

DESIGNING AN INTERCONNECTION CONCEPT OF AN

ELASTIC COMPUTE CLOUD (EC2) ENVIRONMENT

WITH LOCAL NETWORKS VIA VPN

Bernd Hietler

Abstract Elastic Compute Cloud (EC2) is an Amazon webservice

which makes it possible to set up and run virtual machine servers

in Amazon’s cloud environment in a flexible manner within a few

minutes. Today these machines are mostly used as part of a short-

term solution for different kinds of Internet services. This text

describes a design of an interconnection concept for the use of

EC2 instances in the local network. Here these virtual machines

can be used as replacements for high priced local servers which are

expensive to purchase and to maintain. The most suitable solution

in this case seems to be the concept of Virtual Private Networks

(VPNs).

ACKNOWLEDGMENTS

At first I would like to thank my examiner Dorothee Koch from HfT Stuttgart
for the feedback and mentoring of this thesis and Aleksey Aristov for the topic
idea, his support and advises.

I’d also like to thank Dr. Jörn Weigle and Dr. Stephan Wilczek from the
Weiglewilczek GmbH for providing the Amazon Web Services account the
office infrastructure, bearing the expenses for books and other support.

Furthermore I want to express my thanks to my friends and fellow students
Frieder Bürzele and Levin Fritz for proofreading.

Without the financial support of my parents it would have been very dif-
ficult to finish my studies in this time.

Contents

Table of Contents iv

1 Introduction 1
1.1 Problem Definition . 1
1.2 Cloud Computing . 2
1.3 Virtual Private Networks (VPN) 2

2 The Technology’s State of the Art 4
2.1 Elastic Compute Cloud (EC2) 4

2.1.1 The Elastic Compute Cloud Service 4
2.1.2 Amazon Machine Images 5
2.1.3 The Amazon Simple Storage Service 5
2.1.4 EC2 Security Aspects 6
2.1.5 EC2 Network Aspects 7
2.1.6 EC2 Tools and Utilities 8
2.1.7 Programming Interfaces 9

2.2 Virtual Private Network Aspects 10
2.2.1 VPN Topology Types 10
2.2.2 VPN Architectures . 12
2.2.3 Protocols for Encryption and Transport 14
2.2.4 VPN Implementations 16

2.3 Cloud Computing and Local Networks 17
2.3.1 On-Demand VPN Server as Internet Gateway 17
2.3.2 Cohesive Flexible Technologies Corporation 17

3 The Concept 19
3.1 Determining the VPN Interconnection 19

3.1.1 The Topology . 19
3.1.2 The Architecture . 21
3.1.3 The Implementation 21

3.2 The Result . 22
3.2.1 The Concept Topology 22
3.2.2 Details . 24

iv

CONTENTS v

3.2.3 Technical Specifications 25

4 The Implementation 27
4.1 Preparing the Infrastructure 27

4.1.1 Limitations . 27
4.1.2 Prerequisites in the Local Network 27
4.1.3 Defining a Security Group 28

4.2 Preparing the Local VPN Server 28
4.2.1 Set up a GNU/Linux Server 29
4.2.2 Install OpenVPN . 29
4.2.3 Create the Public Key Infrastructure 29
4.2.4 Enable Packet Forwarding 30
4.2.5 Set up and Start OpenVPN 31

4.3 Preparing the Server in the Cloud 32
4.3.1 Select an AMI and Launch an Instance 32
4.3.2 Set up the Dynamic DNS Service 33
4.3.3 Install OpenVPN . 33
4.3.4 Enable Packet Forwarding 33
4.3.5 Set up and start OpenVPN 33
4.3.6 Test the Connection 35
4.3.7 Bundle the Instance to a new AMI 36

4.4 Prepare EC2 Client Template Images 36
4.5 Initiating the VPN Infrastructure 37

4.5.1 Starting the Cloud-Sided Server 37
4.5.2 Establishing the Tunnel 38
4.5.3 Adding Cloud Instances to the Local Network 38
4.5.4 Shutting down . 38

5 Analysis 40
5.1 EC2 Instances and VPN . 40

5.1.1 The Network Address Translation Attempt 40
5.1.2 General Experience with EC2 41

6 Summary 42
6.1 Conclusion . 42
6.2 Future Perspective . 42

Bibliography 43

Glossary 46

List of Abbreviations 50

Index 52

v

CONTENTS vi

Declaration 53

vi

Chapter 1

Introduction

1.1 Problem Definition

The so-called era of the Web 2.0 brought not only a change of the Internet
but also of the way how we use our desktop computers. Today a big amount
of applications and tasks are no longer executed in our desktop machines but
in the Internet. Webservices are becoming more and more popular and im-
portant. This tendency is not only relevant for our desktop machines. Many
smaller companies are moving servers or specific services to external large-
scale datacenters as well. In many cases this is more efficient for the company,
because it takes less effort to take care of power blackouts, network connec-
tivity problems, hardware-related problems or to run backups and software
updates. Nicholas Carr compares this development to the era of industrial-
ization in the 19th century, where factories first ran their own small power
generators and then switched more and more to the electric power grid [1].
Here he creates an analogy of the electric power grid and the broadband
Internet, where the role of the electric power plants is compared to the role
of large data centers running a large number of servers in an efficient way.
Information Technology, he claims, is becoming more and more a service that
can be obtained out of the network socket in the wall. This concept is known
as utility computing. Cloud computing is a new technology, often required
by utility computing services, that provides an environment where virtual
servers can be launched and operated in a very flexible manner. This envi-
ronment is designed to run servers for Internet applications like webservers
during performance peaks. In cases where companies need to run servers in
their local networks, for instance to add an temporary intranet application or
only because they need more computing power for a short period, they still
have to go back to the adding of local hardware to their networks. This is
expensive and mostly means a lot of work. It would be an important benefit
to build up a secure interconnection of cloud computing instances with local
networks.

1

Cloud Computing 2

1.2 Cloud Computing

The term cloud computing is often associated with the technology grid com-
puting and the business model utility computing. Grid computing is a kind
of distributed computing on computer clusters. The typical grid computing
environment is not limited to a single data center. It consists of several data
centers which are located in different places, sometimes even on different con-
tinents, connected via high speed data cables. Grid computing was primarily
designed for special compute-intensive tasks e.g in science and research. Due
to falling prices for network and server hardware, today, large computer
grids are operated for economic purposes as well [2]. Cloud computing, usu-
ally relying on a grid computing infrastructure, is a good example for this
development. Franco Travostino, a system architect at Ebay, describes cloud
computing as more related to the Web 2.0 mindset, where there has to be sim-
plicity in contrast to grid computing, which is out of supercomputing, where
people are used to have a look at very complex things [3]. This simplicity is
represented by easy to handle tools and programming APIs to manage these
virtual servers. Cloud computing can be understood as the possibility to set
up, start, administer and shut down virtual servers via mouse clicks or sim-
ple commands. If cloud computing is offered as a service to customers it fits
with the term utility computing. Today there are different technology types
and vendors of cloud computing services e.g. Sun, Oracle and Amazon. This
thesis describes an interconnection with Amazon’s cloud computing service
Elastic Compute Cloud.

1.3 Virtual Private Networks (VPN)

There is no consistent terminology for the Virtual Private Network concept,
but the book “Building GNU/Linux virtual private networks” [4] gives a rea-
sonable definition. Usually a VPN is considered as a local network, where
other networks or single machines are connected via encrypted tunnels using
an already existing network connection. A tunnel is a network connection
where one network protocol is transported within another protocol. In this
case it is used to encapsulate and encrypt network packets that are sent
through an insecure environment (usually the Internet). Thereby they are
unreadable for others than the receptor. Hence different participants are
forming a new “virtual” network with a “private” nature. While the term
“network” should be clear, the individual interpretation of “virtual” and
“private” may vary depending on their viewing perspectives. “Virtual” net-
works for instance can be considered as different parts of an entire network
which are using different network protocols. Also a combination of different
connected networks or single clients can be called a virtual network. The

2

Virtual Private Networks (VPN) 3

term “privacy” can be understood in a physical manner, e.g. a connection
between private networks which might not necessarily be encrypted. It can
also be regarded as an encrypted connection of participants which aren’t
necessarily located in private networks [4] [5]. Private networks consist of
IP addresses which cannot be allocated in the Internet and are reserved for
the use in internal networks of companies or at home like e.g. the network
192.168.0.0 [6]. The Virtual Private Network concept in this text will be an
encrypted connection between a group of server instances, which are running
in EC2’s private network, and a local private network, where they can in-
teract with local server machines. During the evaluation of different VPN
technologies it turned out that a plain site-to-site VPN, in which the cloud
instances don’t need to be modified, is not possible. This is caused by specific
cloud computing network issues, mainly the lack of an accessible standard
gateway for the EC2 instances. Therefore each instance has to act like a
VPN client, connecting to VPN server in the cloud.

3

Chapter 2

The Technology’s State
of the Art

For the design of a specific network solution it is necessary to start with the
description and analysis of the different technologies which are used or could
be used for the design of this VPN concept. The first part of this chapter
covers Amazon’s EC2 service. The second part deals with the VPN aspects
and their reconcilability with EC2.

2.1 Elastic Compute Cloud (EC2)

2.1.1 The Elastic Compute Cloud Service

The Elastic Compute Cloud (EC2) is a cloud computing environment, run
by Amazon, which is based on the Xen virtualization technology. It is part
of Amazon’s Webservices (AWS), a collection of remote computing services
offered over the Internet. EC2 makes it possible to run and manage pre-
defined or self built virtual server instances in this environment and access
them via the Internet. They are based on predefined images called AMI,
which means Amazon Machine Image, and can be handled via command
line tools or via programming APIs. EC2 runs as a paid webservice from
Amazon which requires a valid Amazon S3 netstorage-account as well. The
EC2 network consists of several availability zones, which are hosted in dif-
ferent datacenters. Currently there are three availability zones us-east-1a,
us-east-1b, us-east-1c in the USA and since December 2008 Eu-west-1

in the EU as well. For security reasons the exact location is kept secret and
a strong security concept is underlying these data centers [7]. The EC2 ser-
vice is still labeled Beta, which means the service’s features are still evolving
quickly and there is still a small risk of problems [8].

4

Elastic Compute Cloud (EC2) 5

2.1.2 Amazon Machine Images

There are ready defined AMI images provided by Amazon, which can be
taken as template to modify, configure and register as own customized im-
ages. It is possible as well to build own images from scratch via loopback
file or purchase AMI images for special tasks. There are predefined AMIs for
different GNU/Linux distributions and for OpenSolaris1. During the writ-
ing of this thesis Amazon added predefined Windows AMIs as well. This
thesis however only describes the work with GNU/Linux based AMIs. The
following schema shows the steps that are required to run an EC2 instance:

Figure 2.1 The basic workflow to use EC2 [9].

Basically an AMI image can is an image of an usual Xen guest host. The
characteristics of AMI images are the environment where they are running,
the possibilities of management with EC2’s tools and utilities and the special
network aspects. There are five different sizes of AMIs with different prices.
The standard size is called m1.Small and has 1 EC2 Compute Unit (1 vir-
tual core with 1 EC2 Compute Unit) 1.7 GB RAM 160 GB Storage 32-bit.
It is possible to choose different AMI variations with different CPU power,
image storage or memory up to the largest AMI size which is called c1.xlarge.
It has 20 EC2 Compute Units (8 virtual cores with 2.5 EC2 Compute Units
each), 7 GB Memory and 1.6 TB Storage.

2.1.3 The Amazon Simple Storage Service

The Simple Storage Service (S3) is Amazon’s online storage webservice. It
can be managed through a simple web interface. Every customer can allocate
storage space without any limitation. Within EC2, S3 is used to store self
built or reconfigured AMI images which are split up into so-called bundles.
This means a snapshot of an instance’s root file system is split up to smaller
packets that are compressed, encrypted and signed. It is possible to build

1www.opensolaris.org

5

Elastic Compute Cloud (EC2) 6

AMI images that use S3 Storage as persistent storage, using a so-called Elas-
tic Block Store (EBS) volume. The data will then remain in S3 after shutting
down the instance. Additional to this feature, EC2 offers the option to do
snapshots of an EBS volume at a particular point in time and store them
on S3. An EBS can be mounted from an EC2 instance like a usual storage
device, like shown in figure 2.2. S3 stores files as objects which are organized
in buckets with global names. Each bucket can be given or denied read or
write access for other AWS users via ACLs. For the unique identification of
objects within buckets there is a third component called key. For the use of
S3 there is a SOAP and a REST programming API as well. The use of S3 is
described in the Simple Storage Developer Guide [10].

Figure 2.2 EC2 instances using EBS volumes. [9]

2.1.4 EC2 Security Aspects

For the registration of an Amazon Webservice account a credit card and
email address is needed. This section describes the AWS Security concept
and how a secure access to the single services and EC2 instances is realized.

Keys and Certificates for Amazon Webservices

During the signing up process for an Amazon Web Services account at the
AWS home page [11] the password is set with the email address as username.
AWS uses two different procedures for identification and authorization. The

6

Elastic Compute Cloud (EC2) 7

first uses an HMAC algorithm to sign each request with a 40-character secret
key. The second is based on X.509 certificates. Amazon creates a secret key
and X.509 keypair for each user which can be downloaded from the AWS
homepage’s user dashboard. It is also possible to upload X.509 certificates
from other sources. These certificates are then trusted as well. Thus after
signing up, the user gets a X.509 certificate, an access key, a secret key, an
account ID and a private key.

Secure Shell Keypairs

While instances based on self created images can be accessed using the root
password that has been set up during the creation, the instances based on
public AMIs must be accessed via SSH keypairs. A keypair can be created
using the ec2-api-tools described on the following pages. The creation is done
by the following command:

$ ec2−add−keypa i r <keypair−name>

This command returns the key which should be saved in a file with the
keypair name. After the generation of a key pair, the public key is stored
in Amazon EC2. The public key is copied to the instance’s metadata if an
instance is launched using the key pair name. This makes it possible to access
the instance securely using the private key.

Critique

Amazon allows the resending of forgotten AWS passwords. Therefore full
access to the AWS services is possible with the knowledge of the username
(the customer’s email address) and a password that can be resent via this
email. Hence eavesdropping of the the email account’s password leads to full
access to the AWS services. The Harvard University’s Center for Research
on Computation and Society considered this issue in an evaluation as one of
the most critical security aspect [12].

2.1.5 EC2 Network Aspects

Every launched instance gets an internal network address via DHCP and an
internal DNS entry. This internal network address is located in the private
network [6] 10.0.0.0/8 and is translated via NAT to an external IP address.
The instance can be reached through this external IP address, which is bound
to an EC2 specific DNS entry. This external DNS entry contains the exter-
nal IP address in its name. For example an instance with the IP address
123.123.123.123 can be reached via the following external DNS entry:

ec2-123-123-123-123.compute-1.amazonaws.com

7

Elastic Compute Cloud (EC2) 8

An internal DNS name is bound to the MAC address of the instance’s vir-
tual ethernet device and can only be reached within the EC2 environment.
A DNS entry with a MAC address 12:31:39:02:ED:08 would look like the
following example:

domU-12-31-39-02-ED-08.compute-1.internal

Usually the external IP addresses are allocated dynamically from Amazon’s
IP pool. It is possible to purchase static IP addresses as well and bind them
to the instances if needed. These IP addresses are called Elastic IP addresses.
They are static IP addresses which are associated with the customer’s ac-
count, not with a single instance. The customer can remap these elastic IP
addresses to any other running instance belonging to the account.

Instances can be grouped in so-called security groups. These groups are a
set of rules, defining firewall issues such as open ports and allowed protocols.
This makes it possible to run different groups of instances with different
firewall security levels. For example the access via a specific port to instances
in one group can be allowed or denied. One instance can be run in several
groups at once and is not restricted to one single group.

2.1.6 EC2 Tools and Utilities

EC2 instances and AMI images can be managed and controlled via commands
typed at the console or via programming APIs. There are also graphical user
interfaces like the plugin Elasticfox [13] for the Firefox webbrowser or the
CloudStudio [14] software. With these applications EC2 instances can be
managed in a comfortable way. The command line tools are implemented in
Java and can be used via the Windows DOS prompt and via the Unix shell.
The only requirement is an installed Java Runtime Environment.

Controlling Instances

The ec2-api-tools are used to control EC2 instances. They provide commands
to launch, reboot or shutdown instances and to manage security groups, elas-
tic IP addresses and SSH keypairs. The path to the ec2-api-tools should be
stored in an environment variable called $EC2 HOME and in the $PATH
variable. A hidden directory called .ec2 in the operating system user’s home
directory contains the AWS private key and the AWS certificate. It is ac-
cessed by the different ec2-api-commands when needed.

Controlling Images

The ec2-ami-tools are meant to be installed in the AMI image or on the local
machine when AMI images are created from scratch. They are needed in the
bundling process of an image. This process consists of commands to upload

8

Elastic Compute Cloud (EC2) 9

and download bundles, to delete bundles and to unbundle an image. For the
rebundling of a running AMI instance the command ec2-bundle-vol has to
be used. The command ec2-bundle-image is used to bundle an image that is
created from scratch.

2.1.7 Programming Interfaces

The EC2 webservice can be accessed via the SOAP protocol or the Query
API, which are both described here. Further information can be retrieved
from Amazon’s EC2 Developer Guide [9] and the Amazon Webservices Pro-
gramming Guide [8].

The SOAP Interface

The SOAP programming interface is described in an XML document written
in the Web Services Description Language (WSDL). This document strictly
defines which data types may appear in SOAP requests or responses. SOAP
requests and responses within EC2 follow current standards. This means
every programming language with appropriate library support, such as C++,
C#, Java, Perl, Python and Ruby, can be used to interact with EC2. The
SOAP interface authenticates request messages through an X.509 certificate,
described in section 2.1.6, instead of the procedure through access and secret
keys. The SOAP interface, or tools based on this interface requires the
public and private X.509 certificate files in addition to the AWS Access Key
Identifiers.

The Query Interface

The Query API uses standard HTTP requests like GET or POST and a
query parameter called Action or Operation. While the Action parameter is
recommended by Amazon’s EC2 Developer Guide [9], the Operation param-
eter can be used for backward compatibility with other AWS Query APIs.
To handle the authentication and selection of an action each Query request
must include common parameters. Operations that take lists of parameters
use the param.n notation, where values of n are integers starting from 1. The
Query API authenticates every request to EC2 through a request signature.
This signature is created by constructing a string and using the secret AWS
access key to calculate an RFC 2104-compliant HMAC-SHA1 hash.

Libraries

There are several code examples for Ruby, Java, Python, Perl, PHP and
other languages published by Amazon and others. However this are just
code samples and there are no official libraries.

9

Virtual Private Network Aspects 10

2.2 Virtual Private Network Aspects

2.2.1 VPN Topology Types

There are different types of VPN topologies according to their intended pur-
pose and the environment where they are used. For the design of a VPN en-
vironment it is important to have a look at those types. The most important
ones for the most typical usages will be described on the following pages.

End-to-End Connections

The simplest VPN topology is the end-to-end VPN. It is used to establish a
temporary connection between two computers over the Internet or another
insecure network. In this case there are no defined server or client roles. The
most common case where this topology is used, is to secure the connection of
two machines via the Internet. Basically this is not a genuine VPN, but the
same technologies are used to establish connections in the other VPN topolo-
gies.

Figure 2.3 End-to-end VPN

End-to-Site Networks

The end-to-site VPN topology is often used by companies where the em-
ployees need to connect to the company’s firewalled network from outside.
Usually this is from the home office, during business travel or while doing cus-
tomer service. This scenario is also called Roadwarrior VPN or Remote Ac-
cess VPN. Another case where this topology is used are secured wireless
networks. Here the VPN server provides the connection to the Internet.
Therefore end-to-site VPN means that single computers are connecting from
outside to a firewalled private network.

10

Virtual Private Network Aspects 11

Figure 2.4 An end-to-site VPN with three clients connected

Site-to-Site Networks

A site-to-site VPN is often used to establish one permanent virtual network
between two or more private networks [6]. This is useful for different facili-
ties of one company in separate locations which are not connected through a
private data cable. Here the single private networks appear like one big net-
work. If two or more of the participating private networks are using the same
network classes and subnets, it is necessary to translate their IP addresses
with a NAT server [15]. For example, if there are two private networks which
both use the IP addresses within the network 192.168.1.0/24, the addresses
have to be translated into another IP address range or subnet on both sides.

Figure 2.5 Two networks forming a site-to-site VPN

11

Virtual Private Network Aspects 12

Multi-Singlepoint Networks

A Multi-Singlepoint VPN creates a new virtual network containing the par-
ticipating machines without the local networks behind them. This new vir-
tual network has to be a in subnet where none of the participating machines
is connected to via their real network devices. Every single machine needs
to connect as client to the VPN server and receives an IP address for the
virtual device. This kind of VPN is often used for online games or other
cases where different computers from different private networks need to com-
municate as if they were in one network. Machines participating in Multi-
Singlepoint VPNs are separated from the real local networks behind them.

Figure 2.6 4 clients forming a Multi-Singlepoint VPN.

2.2.2 VPN Architectures

To describe different network technologies, protocols and applications, there
are two common models which divide the network in several abstraction
layers: the OSI Reference Model [16] and the TCP/IP model [17]. Tables 2.1
and 2.2 represent the two models. They show the different VPN technologies
and protocols that will be discussed on the next pages and could be used to
interconnect with Amazon’s EC2 network. The descriptions will refer to the
different layers of the network models.

12

Virtual Private Network Aspects 13

OSI Layer Class Examples VPN Types Units

Application
application
oriented

HTTP SMTP -
Presentation HTML - data

Session RPC NetBIOS SSH
Transport TCP UDP SSH/TLS GRE segments
Network transport IP ICMP IPsec IP Routing packets
Datalink oriented ARP RARP Eth. Bridging frames
Physical V.28 X.21 - bits

Table 2.1 OSI layers, example protocols, VPN technologies

TCP/IP Layer Class Examples VPN Types

Application
application HTTP SMTP RPC

SSH
oriented HTML NetBIOS

Transport
transport
oriented

TCP UDP SSH/TLS GRE
Internet IP ICMP IPsec IP Routing
Subnet ARP RARP Ethernet Bridging

Table 2.2 TCP/IP layers, example protocols, VPN technologies

While different protocols and techniques can be used to build VPN tunnels
on different hardware platforms running different operating systems, there
are two major ways to establish a VPN connection on GNU/Linux-based
machines, IP routing and ethernet bridging, which take place in different
network layers. This is important for the usage within the EC2 network be-
cause of technical issues and security measures, taken by Amazon, described
later on. The universal TUN/TAP driver [18], developed by Maxim Kras-
nyansky, is widely used on machines based on Unix-like operating systems.

IP Routing

In the IP routing mode clients and servers communicate on the OSI model’s
[19] network layer or on the TCP/IP model’s [17] Internet layer. Therefore
the routing mode only works with the IP protocol. The connection is usually
established via the virtual network interface tun or if using IPsec the virtual
ipsec device. The connecting client receives, most commonly via DHCP, an
IP address from the VPN server. This IP address must be in in a different
subnet than the part taking subnets like shown in figure 2.7. This connected
machine can then be regarded as the virtual extension of the local network.
Because the IP suite is standard for the Internet and has risen as quasi
standard for local area networks, the IP routing mode is very flexible and
can be applied in many network environments.

13

Virtual Private Network Aspects 14

Figure 2.7 VPN endpoints need to connect with IP addresses of a
different subnet than their local network addresses.

Ethernet Bridging

In the ethernet bridging mode the clients and servers communicate on the
OSI model’s datalink layer, which is equivalent to the TCP/IP model’s sub-
net layer. Most commonly ethernet bridges are established via the virtual
network interface tap, but in special cases it is possible to build ethernet
bridges with IPsec as well. The two different networks behave similarly to
subnets linked with hubs or switches. As hubs and switches operate in the
datalink layer of the OSI model, bridging works not only between IP networks
but also with IPX and other network types. Here it is necessary to build a
bridge between the physical network interface card (NIC) and the tap de-
vice. The bridged network interface is switched into promiscuous mode, that
means all incoming packets, even those which aren’t addressed to the physical
interface, are forwarded to the operating system’s tap device. These packets
are sent via an encrypted network tunnel to the other network, where they
are accepted by another tap device. Here the tap device is bridged with a
physical network interface card which routes the packets to the other local
area network. A bridged network interface loses its IP address which usually
is assigned to the tap device. Further information on ethernet bridging can
be found at the websites of Vtun [18] or OpenVPN [20].

2.2.3 Protocols for Encryption and Transport

This section gives a small overview on different protocols used to establish
the connections and encryption of VPNs.

The Point to Point Protocol (PPP)

Primarily the Point to Point Protocol (PPP) was intended to connect com-
puters via phone lines to other hosts or networks and is described in RFC
1661 [21]. The Point to Point Protocol over ethernet (PPPoe) is still used
today for connections via DSL. PPP is not restricted to physical connections.

14

Virtual Private Network Aspects 15

It can be used to establish connections between any hosts that have network
connectivity.

Transport Layer Security (TLS) and Secure Socket Layer (SSL)

The cryptographic protocols Transport Layer Security (TLS) and its pre-
decessor Secure Socket Layer (SSL) provide data integrity and security for
IP networks. They are located in the transport layer of the OSI model. TLS
is described in RFC 5246 [22]. TLS version 1.0 is equivalent to SSL version
3.1. It consists of four protocols which are divided in two layers:

Handshake Change Cipher Specification Alert Application Data
Protocol Protocol Protocol Protocol

Record Protocol

The TLS record protocol forms the lower layer and is used to secure the
connection. The TLS handshake protocol is based on the record protocol.
It performs the authentication and negotiates the keys and cryptographic
algorithms. The change cipher specification protocol validates that a session
changes to the negotiated cipher. The TLS alert protocol returns warnings
or errors that may occur during the session. Finally the application data
protocol is responsible to transport the data.

Internet Protocol Security (IPsec)

Internet Protocol Security (IPsec) is a standard set of rules and protocols. It
is used to secure IP communications by authenticating and encrypting every
single IP packet of a data stream. IPsec is an end-to-end security solution
and operates at the OSI model’s network layer. It is described in RFC
4301 [23]. IPsec also supports establishing mutual authentication between
agents at the beginning of the session and negotiation of cryptographic keys
to be used during the session. Bruce Schneier and Niels Fergusion, who made
an evaluation of IPsec [24], were very dissappointed of IPsec. They criticize
IPsec as too complex to be run be securely.

Generic Routing Encapsulation Tunnel (GRE)

The tunneling protocol Generic Routing Encapsulation (GRE) was developed
by Cisco and is used to encapsulate a variety of network layer protocol packet
types inside IP tunnels via a virtual point-to-point link. It is used by Cisco
routers but is also part of the Linux kernel.

15

Virtual Private Network Aspects 16

2.2.4 VPN Implementations

There are some ready-made software implementations which facilitate the
usage of encryption and connection protocols and concepts. The most inter-
esting ones for the connection concept with the EC2 network are explained
here.

Point-to-Point Protocol over Secure Shell

This concept is described in the book “Building Linux Virtual Private Net-
works” [4]. Because PPP connections are not encrypted this concept wraps
PPP in a Secure Shell (SSH). Thus the whole authentication and encryption
is handled by SSH and the transport is done by a passwordless PPP con-
nection. SSH supports RSA and DSA asymmetric cryptography algorithms.
This concept uses SSH identities, which means keypairs are used instead of
password authentication.

FreeS/WAN and Openswan

Openswan [25] is an implementation of IPsec for GNU/Linux and is the con-
tinuation of a project called FreeS/WAN. Openswan can, similar to Open-
VPN, be managed via configuration files, where additional parameters like
routing, authentication types, connection settings and other issues can be
managed.

VTun

Vtun [18] stands for Virtual Tunnel and can set up encrypted tunnels over
TCP/IP networks. It supports the Point-to-Point Protocol and the IP proto-
col via the “universal TUN/TAP driver”. The encryption can be established
through SSL or a simple XOR cipher, which is easy to decode. VTun uses
private shared keys to negotiate the handshake procedure.

OpenVPN

OpenVPN [20] is an open-source VPN implementation which uses the SSL
encryption protocol. It is possible to establish a VPN in IP routing mode or
in ethernet bridging mode. If VPN technologies are used within the EC2 net-
work the choice is very often OpenVPN, for example as secure Internet gate-
way [8] which is described in section 2.3.1. Like Vtun, OpenVPN uses the
“universal TUN/TAP driver” for its virtual network interfaces and allows
both, the use of X.509 certificates and pre-shared keys. The comfortable
and multifunctional management of routing, authentication, connection set-
tings and other issues via configuration files appears as an advantage. With

16

Cloud Computing and Local Networks 17

a properly set configuration file, a VPN can be initiated with one single
command.

An Implementations Overview

Table 2.3 shows the technologies discussed, their according network layers
and encryption technologies:

Implementation OSI Layers TCP/IP Layers Encryption

PPP over SSH Datalink Subnet SSH
Openswan Network Internet IPsec

VTun Datalink Network Subnet Internet TLS/SSL
OpenVPN Datalink Network Subnet Internet TLS/SSL

Table 2.3 An overview of the different implementations.

2.3 Cloud Computing and Local Networks

There are already a few VPN applications for cloud computing environments
which will be described here.

2.3.1 On-Demand VPN Server as Internet Gateway

A setup description of an end-to-end VPN connection (see section 2.2.1) for
the use of an EC2 instance as a tunneled Internet gateway within an insecure
network environment, like for example a wireless LAN, can be found in the
Amazon Webservices Programming guide [8]. This connection is realized
with OpenVPN. The complete Internet traffic is lead through the OpenVPN
tunnel to EC2’s Internet gateway. Thus eavesdropping by others within the
insecure network is not possible.

2.3.2 Cohesive Flexible Technologies Corporation

A company named Cohesive Flexible Technologies Corp [26] offers the soft-
ware “VPN-Cubed”. This company runs an open source project called
“VcubeV” as well [27]. “VcubeV” uses the same underlying VPN design
like “VPN-Cubed”. This design is intended for different datacenters and is
not specifically optimized for EC2. It uses two or more different datacenters
with one VPN server per datacenter. The different network environments
with VPN servers are intended act as redundancy failover. This model fo-
cuses on high availability, which results in high running costs. Nevertheless
the Harvard University’s Center for Research on Computation and Society

17

Cloud Computing and Local Networks 18

describes EC2 services as “fast, responsive, and very reliable”. During ap-
proximately one year of working with EC2 in their project, only one un-
scheduled reboot and one instance freeze [12] occurred. Although there is
a Service Level Agreement [28] for EC2, for small companies it is common
to work with a standard Internet connection, which causes a short period
of network disconnection when the dynamic IP address is remapped by the
Internet service provider. Thus such highly available VPN solutions like
VPN-Cubed or VcubeV are not appropriate in every case. The concept de-
scribed in this thesis aims to be less expensive and adequate for useage in
more common circumstances.

18

Chapter 3

The Concept

While the last chapter gave an overview of the different technologies and their
options, this chapter describes the evaluation of the VPN concept design
referring the EC2 network specifics. The first part contains the evaluation
of the different technologies and concepts that are applied. The latter part
describes the resulting design.

3.1 Determining the VPN Interconnection

3.1.1 The Topology

Internet connections of many local networks (e.g. networks of small compa-
nies) are based on dynamic IP addresses, allocated by an Internet Service
Provider. Hence these external IP addresses, which hide the local networks,
are changing in lease time intervals between a few hours and a day. It would
be an extra effort to determine the current IP address and connect to a
local VPN server from EC2’s network. Therefore the end-to-site topology
concept, with a VPN server in the local network and the EC2 instances as
VPN clients, is not suitable. It would also be an additional effort to install
VPN client software on every participating machine in the local network,
which makes the multi-singlepoint concept unusable as well. Due to these
facts the site-to-site topology appears as the most suitable solution. Here
the local VPN server would connect to the VPN server in the EC2 network,
which has statically allocated an IP address out of Amazon’s IP address pool.

EC2 related Packet Loss

In common networks setting the correct routes is sufficient to make a host
reachable in a site-to-site VPN. Here the EC2 network shows a distinctive
problem. As soon as a packet containing an 192.168.0.0/24 IP address as

19

Determining the VPN Interconnection 20

destination or source leaves an EC2 instance’s eth0 network interface, it dis-
appears in EC2’s network as shown in the following figure. This can be
approved by tcpdumps made on both ends.

Figure 3.1 Packet loss in the EC2 network

A related behavior appears after setting up tunneling devices reaching from
one instance to another. For example an IP over IP tunneling device [29]
with an IP address 192.168.3.0 connecting to another instance can be easily
set up on an instance and returns no error messages. However after setting
up a tunnel device, pointing to another EC2 instance (e.g. the VPN server),
EC2 blocks all packets sent to other EC2 instances, even those that are
destined to or derived from the primarily IP addresses allocated by EC2.
Only tunnels pointing outside EC2’s 10.0.0.0/8 network are working. This is
due to a measure taken by the EC2 administrators to prevent packet sniffing
by EC2 customers [7]. This issue is related to another problem discussed in
the next section 3.1.2 as well. EC2 strictly prohibits the sending of packets
within its network that don’t belong to its official assigned IP addresses.
Thus a tunnel to the the VPN server has to be established via its external
IP address. IP packets sent within an EC2 security group are declared as
safe by Amazon [7]. Sending IP packets via EC2’s Internet gateway could
make eavesdropping possible. Therefore simple unencrypted tunnels like the
“IP over IP” variant are not suitable and the tunnel connection needs to
be encrypted. This requires authentication issues, executed by additional
installed software. This might be the same software that is used to establish
the tunnel between the local network and the EC2 network.

Alternative Solution

These facts make a plain site-to-site VPN impractical and the EC2 instances
need adaption and configuration to gain access to the local area network and
– conversely – be accessible from the local machines. This can be done by

20

Determining the VPN Interconnection 21

configuring the clients as VPN clients, which are connected to the cloud-sided
server via encrypted tunnels. Here the EC2 instances have to utilize the EC2
gateway to connect the cloud-sided VPN server via its external IP address.

This solution can be regarded as a mix of the multi-singlepoint and
the site-to-site topology. Basically the resulting design is more a multi-
singlepoint with the remarkable property that one connecting client acts as a
gateway to its network behind. This client is located in the company’s local
network where the physical machines are located. In the following pages this
machine will be referred as the “local VPN server”.

3.1.2 The Architecture

If an EC2 instance’s network interface card emits packets below the OSI
model’s network layer, which is true for tap devices used for ethernet bridg-
ing, EC2 does not handle these network packets. In this case this is true for
the packets from the connected remote ethernet. The result of a test tunnel
between an EC2 instance and a local server tap devices showed that it is
generally possible to set up an ethernet bridge. Due to the system logs the
tunnel was established successfully, although it was not possible to send or
receive any IP traffic on the EC2 side. Therefore ethernet bridging is not
possible and it is necessary to operate on the IP layer using IP routing via
tun devices or IPsec.

3.1.3 The Implementation

Since packets wrapped by the GRE tunnel are not forwarded within the EC2
network the GRE technology is not suitable. The IPsec protocol requires
a kernel patch [30] to do NAT traversal. Amazon does not allow to build
own kernels for AMIs, and there is no adequate Amazon Kernel Image (AKI)
available. So IPsec also turns out as inadequate. Thus there are three ways
left to establish a VPN tunnel: OpenVPN and Vtun that both use SSL for
encryption and the “PPP over SSH” method. According to the problem
of EC2 internal connections in section 3.1.1 it is recommended to use an
implementation where several clients are able to connect and retrieve routing
rules. This is neither true for the “PPP over SSH method” nor for the Vtun
software. Hence OpenVPN appears to be the best solution.

Access to the Cloud-Sided Server

The server needs to be accessible at a fixed address for the connecting Open-
VPN clients and the local VPN server. Because of dynamic IP address
allocation and therewith changing AWS-related DNS entries, this appears to

21

The Result 22

be a problem. A consistent way to connect to the cloud-sided server could
be achieved through three ways:

• The allocation of an elastic IP address. An elastic IP address can be
easily allocated and attached to an instance. The address needs to be
attached to the instance every time when it is launched, this is indeed
an additional effort, but could be automated as well. However the
allocation of an elastic IP address also adds additional costs.

• Fetch the dynamic DNS entry as variable from EC2/S3. It would also
be possible to write the actual DNS entry of the server instance as
a variable in a file, located in a fixed S3 bucket. The clients could
then fetch this file and use the variable as remote directive in their
OpenVPN configuration files.

• Set up a dynamic DNS service on the cloud-sided server. The most
elegant solution seems to be a dynamic DNS account running on the
cloud-sided server. Every time the cloud-sided server is launched it
connects to the dynamic DNS service which maps the new IP to the
fixed DNS entry. The disadvantage of this solution is that free DNS
accounts may expire when the host that needs to be mapped isn’t
launched for several weeks. Nonetheless dynamic DNS services that
don’t expire can be purchased as well. Thus the use of a dynamic DNS
service appears as the best solution for this problem.

3.2 The Result

After determining different topologies, technologies and models the result is
described here. For better clearness a common network design is assumed
where an extra subnet that belongs to the local network infrastructure is
added. Thereafter the components are described in detail. Finally the con-
cept is completed by technical considerations and specifications.

3.2.1 The Concept Topology

The next page’s figure 3.2 shows the resulting VPN design. The upper side
shows the EC2 network with instances in the VPN security group and next
to them EC2 instances in another security group, which are not connected
via VPN. The lower side shows the local network consisting of the internal
network (192.168.1.0/14) and the DMZ (192.168.2.0/24) besides the two lo-
cal subnets it shows the new virtual subnet containing the EC2 instances
(192.168.3.0/24).

22

The Result 23

Figure 3.2 The resulting design with the two VPN servers and
routes. The local network topology is assumed as the classic ar-
rangement consisting of two subnets; one “internal” subnet contain-
ing workstations, printers and machines that doesn’t or shouldn’t be
accessible from the Internet and one DMZ subnet where servers are
partially accessible via the Internet. The concept is working with
more or fewer subnets as well.

23

The Result 24

3.2.2 Details

The figure on the previous page shows an example scenario that will be
described more detailed here.

The Cloud-Sided VPN Server

The VPN server located in the EC2 network forms the heart of
the new virtual subnet. The tunnel to the local network, as well
as the connections to all the instances converge at this point.
In this example the tun device has the IP address 192.168.3.1
and holds the IP pool for the entire subnet 192.168.3.0/24. Fur-
thermore this machine is running the dynamic DNS service that
maps its IP address to a DNS entry that is listed in the client
sided configuration files. The local VPN server and the clients
automatically connect to the machine labeled by this entry.

The Local VPN Server

The local VPN server is in fact a usual VPN client which is con-
figured as gateway between the local network (192.168.2.0/24)
and the new virtual subnet (192.168.3.0/24). But since it is a
physical machine that is responsible to establish the VPN con-
nection and operate as gateway to the EC2 instances, it is called
server. This machine opens a connection to the static IP address
of the running EC2 sided VPN server. After a remap of the local
dynamic IP address, or other network inconsistencies, the tunnel
breaks down and gets re-established after a few seconds.

The Gateway in the Local Network

The gateway machine in the local network (192.168.1.0/24) con-
tains the firewall and provides the routing. Additional to the
routes pointing at the different subnets and to the Internet, a
further route that leads to the local VPN server as gateway for
the new subnet (192.168.3.0/24) needs to be added. If this is
not possible each local machine intended to communicate with
the EC2 instances needs the route added manually.

The Gateway in the EC2 Network

The gateway in the EC2 network routes the Internet traffic of
the instances. This gives more performance because it disbur-
dens the tunnel by lowering the encrypted throughput. This is
common to other site-to-site VPN designs. Further informations
to this concept can be found in section 3.2.3.

24

The Result 25

The EC2 Instances

EC2 instances are connected to the EC2 sided VPN server via
OpenVPN. Thus they need VPN client software and appropriate
certificates installed. They further require the route to the local
network (192.168.1.0/24) with the local VPN server as gateway.
This can be managed with OpenVPN as well.

The EC2 Instance’s Local Appearance

Each connected EC2 instance gets an additional network tun-
neling interface tun0. The EC2 sided VPN server assigns a lo-
cal IP address (192.168.3.0/24) to this device. Hence it can be
reached in this subnet via the local VPN server and appears as
a local machine.

Local Machines

The machines from the DMZ (192.168.2.0/24) are intended
to interact with the EC2 instances. They need the route to
the new virtual subnet (192.186.3.0/24). This route needs
to be set whether on the gateway or on the machine itself
(see section 4.1.2). The machines from the internal subnet
(192.168.1.0/24) are then able to interact with the EC2 instances
in the new subnet (192.168.3.0/24) and vice versa. This is how-
ever, depending on the setting of the local network’s firewall
located on the gateway machine described above.

3.2.3 Technical Specifications

OpenVPN

The latest version of OpenVPN is 2.1. It is available through the package
management systems for most GNU/Linux distributions today. Version 2.1
features several improvements such as the topology subnet directive that
allows more flexible client IP address assignments.

Operating Systems

OpenVPN runs on GNU/Linux, Windows and several Unix-like operating
systems. Since most AMI images are based on GNU/Linux, the local VPN
server is chosen to run GNU/Linux as well. This makes the concept a bit
more consistent. Other operating systems would work as well if they are
capable of running OpenVPN in version 2.1.

25

The Result 26

Amazon Machine Images

The design is designated to run instances of any AMI that are capable of
running OpenVPN 2.1. Once OpenVPN is installed and configured properly
on an instance, it can be rebundled and used as template for other AMIs
destined for more concrete issues. Thus the design works not only with
GNU/Linux based AMIs, but with Windows and Solaris AMIs as well.

Internet Connection of the Instances

A site-to-site VPN is intended as two independent networks with an en-
crypted connection that lets them appear like one big network. While it is
common practice for multi-singlepoint and end-to-site VPNs to route the In-
ternet traffic through the VPN tunnel, this concept allows EC2 instances to
send their Internet traffic directly via Amazon’s gateway in the EC2 network.
The routing of Internet traffic through the encrypted tunnel is a security
measure. When different clients connect from any environment to a secured
network, they represent in fact security holes in the firewall. If it would
be possible to access the connected client within an insecure environment,
it would be possible to access the entire network where it is connected via
VPN as well. Therefore other network connections of “roadwarriors” con-
necting via VPN, are usually closed by automated scripts. The Internet is
then accessed via the VPN tunnel. EC2 instances though are running in a
secured network themself. Their connectivity is restricted by the rules set in
the VPN security group; and the network they are connecting to is a DMZ,
which is also not underlying the highest possible security level. Because the
VPN tunnel is the bottleneck of a site-to-site VPN and it is not necessary to
route the EC2 instances Internet through that bottleneck, they are allowed
to access the Internet directly.

Subnet Addressing

The scenario shown in 3.2 arranges the subnet 192.168.3.0/24 as new vir-
tual subnet for the EC2 instances. While Amazon EC2 is allocating IP ad-
dresses in the 10.0.0.0/8 network, any other private network described in
RFC 1918 [6] can be used for the EC2 instances. However, if a subnet in
the 10.0.0.0/8 network is desired, some subnets might be available there too.
The on demand Internet gateway described in section 2.3.1 allocates IP ad-
dresses in the 10.4.0.0/16 network. There might be other subnets available
in the 10.0.0.0/8 subnet. A clear statement about Amazon’s use of internal
subnets is found neither in the “Amazon EC2 Developer Guide [9]” nor in
other descriptions or manuals. In this case a question to the AWS team via
the EC2 user forum [11] might be helpful.

26

Chapter 4

The Implementation

This chapter describes the implementation of the concept specified in the
previous chapter. The first part shows the set up of the network environment,
the servers and the cloud-sided instances. The second part describes how the
VPN infrastructure can be established.

4.1 Preparing the Infrastructure

4.1.1 Limitations

Due to the failure of ethernet bridging described in point 3.1.2, it is nec-
essary to use tun devices. This is the cause of some limitations between
the VPN subnet containing the EC2 instances and the local network. The
main aspect is that ARP requests between the two subnets don’t work. Thus
IP broadcasting is not possible and routes must be set manually.

4.1.2 Prerequisites in the Local Network

Generally it is better not to touch a running firewall of a local network, but
there is at least one change required to make this VPN concept working.
The port 1194 needs to be opened for incoming and outgoing traffic. 1194 is
the OpenVPN standard port but other ports can be used as well. This port
needs to be defined in the OpenVPN configuration files described in 4.2.5 and
4.3.5. It needs to be mapped to the internal IP address of the VPN server in
the LAN. The encrypted tunnel will use this port to communicate with the
instances in the EC2 Network. Therefore it is necessary to open this port for
the EC2 network as well, which is described in the next section.

It is recommended to set a default route to the new subnet on the In-
ternet gateway if possible. Usually this is the same machine that runs the
firewall. This example uses 192.168.3.0/24 as new subnet.

27

Preparing the Local VPN Server 28

If this is not possible, every participating local machine needs the route
to the EC2 network set manually by the following command:

route add −net 1 92 . 1 6 8 . 3 . 0 netmask 255 . 255 . 255 . 0 \
gw 192 . 168 . 1 . 2 01 dev eth0

In this example the network where the EC2 instances are located is 192.168.3.0,
the local VPN server has the IP address 192.168.2.201 and the network in-
terface is eth0. The backslash (\) can be omitted if the command is typed
in a single line.

4.1.3 Defining a Security Group

Like the machines in the local network, the EC2 instances need an open
port to communicate with the remote network. For this case we can use the
security groups mentioned in section 2.1.5. Another reason for the use of
security groups is that not every running EC2 instance is wanted to run in
the local network which can be achieved by leaving them out of the VPN-
related security group. Thus it is required to generate a security group and
open the VPN port with the following commands:

$ ec2−add−group VPNgroup −d ‘ ‘EC2 VPN group ‘ ‘
$ ec2−author i z e VPNgroup −P udp −p 1194 −s 0 . 0 . 0 . 0 / 0
$ ec2−author i z e VPNgroup −P tcp −p 22 −s 0 . 0 . 0 . 0 / 0

Here a security group “VPNgroup” with the description “EC2 VPN group” is
created with an open udp port 1194 accessible from any IP address (0.0.0.0/0).
Further the port 22 is opened for access via SSH.

4.2 Preparing the Local VPN Server

After the necessary settings in the participating networks the VPN servers
can be set up. At first the VPN server in the local network will be installed
and configured, which is shown here. For the installation of the local VPN
server it takes several steps described below:

• Set up a GNU/Linux server.

• Install OpenVPN.

• Generate certificates and keys.

• Enable packet forwarding.

• Set up and and start OpenVPN.

28

Preparing the Local VPN Server 29

4.2.1 Set up a GNU/Linux Server

As mentioned before for the local VPN server any operating system capable
of running OpenVPN in version 2.1 could be used. In this example, the
GNU/Linux distribution Debian1 is chosen. It is enough to start with the
installed base system. Additional packages that may be used are fetched
automatically by the Debian package management tool in the next step.
Package management systems of other GNU/Linux distributions should do
this alike.

4.2.2 Install OpenVPN

OpenVPN can be installed on a Debian-based operating system by the fol-
lowing command:

apt−get i n s t a l l openvpn

The apt-get command belongs to Debian’s package management tool APT.

4.2.3 Create the Public Key Infrastructure

OpenVPN provides a collection of scripts called EasyRSA. With these scripts
certificates and keys, used for authentication and encryption, can be created
in a comfortable way.
These scripts are templates and need to be customized. The easy-rsa di-
rectory is located in /usr/share/doc/openvpn/examples/ and should be
copied to /etc/openvpn/, where the scripts can be edited. The setup of the
Public Key Infrastructure (PKI) is done with the following steps:

• Set up a certification authority (CA).

• Create server keypair.

• Create client keypairs.

To set up of the certificate authority, the easy-rsa directory contains a
file named vars with several variables that need to be defined via a text
editor. The most important ones are KEY SIZE, KEY COUNTRY, KEY EMAIL

and similar ones that are used to specify characteristics of the certificate’s
owner. After adapting the variables in the vars file, the variables must be
imported to the shell context to initialize the certification authority. This is
done by the following commands:

$. . / vars
$. / c lean−a l l

1www.debian.org

29

Preparing the Local VPN Server 30

Now the keypair for the certificate authority can be created. It is used later
on to generate the client and server key pairs. The ca.crt is copied to
the server and the clients to validate the opponent’s key pair. It is highly
recommended to keep the ca.key at a save place. The generation is issued
by the following command:

$. / bui ld−ca
$. / bui ld−dh

These two commands return the CA-Key and CA-Cert. The certificate au-
thority is based on this keypair. It is used to generate the keypairs for the
server and the client machines which will be generated in the next step:

$. / bui ld−key−s e r v e r s e r v e r
$. / bui ld−key l o c a l c l i e n t
$. / bui ld−key e c 2 c l i e n t

Thereafter the directory /etc/openvpn/keys should contain the following
files that need to be copied to the server or the clients: dh1024.pem, ca.crt,

ca.key, server.crt, server.key, localclient.crt,

localclient.key, ec2client.crt, ec2client.key.
The table 4.1 shows the file’s purposes and where they are destined to.

Filename Location Description secret
ca.crt server and clients root CA certificate no
ca.key somewhere safe root CA key yes

dh1024.pem server Diffie Hellman no
server.crt server server certificate no
server.key server server key yes

vpnclient.crt client client certificate no
vpnclient.key client client key yes

Table 4.1 An overview of different keys and certificates.

The keys and certificates can now be moved with the scp command to their
destinations.

4.2.4 Enable Packet Forwarding

Because the machine is intended as a gateway, it must be able to forward IP
packets. For that purpose the parameter net.ipv4.ip forward in the file
/etc/sysctl.conf needs to be set to 1. The enabling of packet forwarding
on other operating systems may differ. Admittedly it is a common busines
to set up routers that should be well documented.

30

Preparing the Local VPN Server 31

4.2.5 Set up and Start OpenVPN

OpenVPN can be controlled via command line with the necessary informa-
tions as parameters or via configuration files. A complete list of possible
directives and options can be found on the manual page, which is available
online as well [20]. The next listing shows the configuration file with the
directives necessary to connect to the cloud-sided server:

1 c l i e n t
2 remote <EC2−s e rver−dynamicDNS−name>
3 port 1194
4 proto udp
5 dev tun
6 ca ca . c r t
7 c e r t c l i e n t 0 1 . c r t
8 key c l i e n t 0 1 . key
9 route 1 0 . 0 . 0 . 0 2 5 5 . 0 . 0 . 0 1 9 2 . 1 6 8 . 3 . 1

10 ns−cert−type s e r v e r
11 verb 3

Line one and two declare the machine as VPN client that connects to the
specified remote address.

The lines three to five define the tun device and the use of the UDP
protocol. The defined network port is 1194.

Line 6 to 8 specify the paths to the different keys and certificates. In this
example they are located directly in /etc/openvpn/.

Line 9 contains a routing directive that sets the route to the new virtual
subnet. The IP address 192.168.3.1 represents the cloud-sided VPN server
as gateway.

The ns-cert-type in Line 10 is a security measure to prevent man-in-
the-middle attacks. It verifies that the server certificate’s nsCertType field
is set to “server”.

The latter line sets the system log verbosity to 3. This is a common value
for ready set up machines. If needed the details can be increased through
higher values.

Start OpenVPN

OpenVPN can be started with the standard configuration file client.conf,
located in /etc/openvpn as deamon or with a specified configuration as
parameter. It is possible to start OpenVPN automatically at boot time
which is however not recommended for the local VPN server.

31

Preparing the Server in the Cloud 32

4.3 Preparing the Server in the Cloud

After preparing the network environment for the new VPN, this part de-
scribes the set up of the VPN server inside the EC2 network. In this example
the author’s notebook was used to run the commands and connect to EC2.
The notebook runs under GNU/Linux, thus the quoted commands are typed
in the bash shell and the connection is established via SSH directly instead
of Putty for which would be appropriate for Windows machines. The most
EC2-related instructions could also be directed via graphical user interfaces
like CloudStudio or Elasticfox. To set up the server it takes the following
steps:

• Select an AMI and launch an instance.

• Set up a dynamic IP address service.

• Install OpenVPN.

• Enable packet forwarding.

• Copy the keypair.

• Set up and start OpenVPN.

• Test connection.

• Bundle and register to a new AMI.

4.3.1 Select an AMI and Launch an Instance

This command shows a list of the available AMIs:

$ ec2−desc r ibe−images −a | l e s s

Any GNU/Linux based AMI is usable. In this case the “Ubuntu Intrepid
Base Install” AMI is chosen. The AMI ID is ami-1a5db973. It is launched
by the following command:

$ ec2−run−i n s t an c e s ami−1a5db973 −g VPNgroup −k gsg−keypa i r

This lets the instance appear in the security group “VPNgroup” which was
created above. The gsg-keypair will be used to access the instance in the
next step. After approximately one minute of waiting for the instance to
boot up the ec2-describe-instances command returns the internal and
external DNS entries (see2.1.5). With SSH it is now possible to connect with
the keypair:

ssh − i . ec2 / id−gsg−keypa i r \
root@ec2−72−44−53−18.compute−1.amazonaws . com

32

Preparing the Server in the Cloud 33

Now the instance’s command prompt appears and the root access is accom-
plished.

root@domU−12−31−39−02−F1−C2:˜#

The instance’s hostname is similar to the internal DNS entry which contains
the MAC address as well.

4.3.2 Set up the Dynamic DNS Service

The connecting clients need a fixed URL or IP address to connect the cloud-
sided server automatically. As described in section 3.1.3 this is realized
through a dynamic DNS service. There are several different dynamic DNS
services that offer basic functionality for free. In Chapter 7 of the Amazon
Webservices Programming Guide [8] a detailed tutorial for such a setup can
be found.

4.3.3 Install OpenVPN

The installation of OpenVPN is done similar to the OpenVPN installation
on the local VPN server described before in section 4.2.2. In this example
the Debian-based Ubuntu Linux2 distribution is used, hence this is done with
the apt packaging system as well.

4.3.4 Enable Packet Forwarding

Like the local VPN server, this machine operates as a gateway. Thus the
flag net.ipv4.ip forward in the file /etc/sysctl.conf must be set to 1

likewise.

4.3.5 Set up and start OpenVPN

The next step is to edit the configuration file. This file controls the be-
havior of the OpenVPN software. Here the connection type, encryption
issues, security aspects, routing set up and many other functions are de-
fined. The configuration file is called server.conf and is usually located in
/etc/openvpn/:

2www.ubuntu.com

33

Preparing the Server in the Cloud 34

1 s e r v e r 1 9 2 . 1 6 8 . 3 . 0 255 . 255 . 255 . 0
2 topology subnet
3 port 1194
4 proto udp
5 dev tun
6 dh keys /dh1024 . pem
7 ca keys /ca . c r t
8 key keys / s e r v e r . key
9 c e r t keys / s e r v e r . c r t

10 c l i e n t−to−c l i e n t
11 c l i e n t−con f i g−d i r / e t c /openvpn/ccd
12 ke epa l i v e 10 60
13 verb 3
14 route 1 92 . 1 6 8 . 1 . 0 255 . 255 . 255 . 0 1 9 2 . 1 6 8 . 3 . 2
15 push ” route 1 0 . 0 . 0 . 0 2 5 5 . 0 . 0 . 0 ”
16 push ” route 1 92 . 1 6 8 . 3 . 0 255 . 255 . 255 . 0 ”

The first line defines the machine as VPN server that provides the defined
IP address pool. This means that this machine is running the OpenVPN
service in server mode and other machines connect to it as clients. The
server entry includes the tls-server and the push directive. tls-server

enables TLS encryption and assumes the server role during TLS handshake.
OpenVPN is designed as a peer-to-peer application. The designation of the
client or server directive is only for negotiating the TLS control channel.
The subnet 192.168.3.0 with the appropriate netmask 255.255.255.0 behind
the server entry signifies that the server is providing IP addresses for the
connection clients common to a DHCP server.

The entry topology subnet in line two assigns one IP address to every
connecting machine. This entry is necessary because otherwise the client
IP addresses would be organized in so called “mini subnets”. This would
consume four IP addresses per connection. The topology subnet directive
is initially available since OpenVPN version 2.1. The former mini subnet
arrangement was necessary for clients running Windows and is now obsolete.

The lines three to five define the connection. The tunnel is set up through
a tunneling device, the network port is 1194 and the connection is established
via the UDP protocol.

The directives in line 6 to 9 contain the paths to the certificates and keys.
In this example they are all located in /etc/openvpn/keys/. The OpenVPN
server mode handles multiple clients through the tun interface. Hence it
acts effectively a router. In line 9 the client-to-client flag lets OpenVPN
internally route client traffic instead of pushing all client-originating traffic
to the tun interface.

The client-config-dir is used for specific operations executed when
the local VPN server connects. This is described later on.

34

Preparing the Server in the Cloud 35

In line 12 the directive keepalive 10 60 lets the server ping its connec-
tions every 10 seconds. If there is no response for more than 60 seconds, the
connection will be closed.

For a moderate verbosity in the system log the verb flag in line 13 is
set to 3. Finally in lines 15 and 16 the routing directives are pushed to the
connecting clients.

The /etc/openvpn/ccd/ directory is used for specific adjustment of the
local VPN server. It contains a file with the client’s X509 common name in
this example the common name is localVPN. This name was chosen during
the generation of the local VPN servers’ keypair, described in section 4.2.3.

i r o u t e 1 9 2 . 1 6 8 . 1 . 0 255 . 255 . 255 . 0
push route ” 192 . 1 6 8 . 1 . 0 255 . 255 . 255 . 0 ”

When the local VPN server connects to the cloud sided server the TLS hand-
shake takes place. The common name defined in local VPN servers’ keypair
is then read and processed by OpenVPN. The ccd directory contains a file
with that common name and processes the commands listed there. This sets
the routes to the local network.

Start OpenVPN

If OpenVPN is installed on the Ubuntu operating system, it is set to start
automatically on boot time. However when using different GNU/Linux
derivates or other operating systems it might be necessary to configure this
manually. The best way to check if OpenVPN really starts correctly on boot
time is a simply reboot.

4.3.6 Test the Connection

Before the instance is bundled to a new AMI it is recommended to test the
connection through the tunnel. The cloudsided server’s tun device is assigned
to the IP address 192.168.3.1, thus the other end of the tunnel is represented
by the local VPN server with 192.168.3.2. In this example the IP address of
the local VPN server’s eth0 interface card is 192.168.2.201.

$ ping 192 . 1 6 8 . 3 . 2
$ ping 192 . 168 . 2 . 2 01

This two commands assure the tunnel is up and the local network is reachable.
On the local VPN server the IP address 192.168.3.1 must be pingable now
as well.

35

Prepare EC2 Client Template Images 36

4.3.7 Bundle the Instance to a new AMI

Now that the cloud-sided server is set up correctly and ready to use, the run-
ning instance can be bundled to a new AMI. This is done by the following
command:

$ ec2−bundle−vo l −k <pr i va t e key> −u <user−id> −c \
<c e r t i f i c a t e > −r i386 −p vpnserver
$ ec2−upload−bundle −b <bucket−name> −m \

/tmp/ vpnserver . mani f e s t . xml \
−a <accesskey> −s <s e c r e t key>

$ ec2−r e g i s t e r <bucket−name>/vpnserver . mani f e s t . xml

The ec2-bundle-vol command generates bundles of a new AMI and stores
them in the running instance’s /tmp directory.
Afterwards ec2-upload-bundle copies the bundle to the S3 bucket.
Finally ec2-register makes the new AMI available. After the registration
the new AMI ID is displayed:

IMAGE ami−858463 ec

The VPNserver AMI is now ready to use.

4.4 Prepare EC2 Client Template Images

The AMI images of EC2 instances intended to act as VPN clients need the
following steps to be set up.

• Select an AMI and launch an instance.

• Install OpenVPN.

• Set up OpenVPN.

• Copy the keypair.

• Bundle and register the AMI.

Basically most of these steps are similar to the ones for the cloud sided server,
described in the last section. First an AMI has to be chosen and launched
in the VPN security group. A dynamic DNS service is not needed here.
Because the instance is intended to run as VPN client, after the installation
of OpenVPN the configuration file different looks different:

36

Initiating the VPN Infrastructure 37

1 c l i e n t
2 nobind
3 port 1194
4 proto udp
5 dev tun
6 ca ca . c r t
7 c e r t c l i e n t 0 2 . c r t
8 key c l i e n t 0 2 . key
9 ns−cert−type s e r v e r

10 route 1 92 . 1 6 8 . 2 . 0 255 . 255 . 255 . 0 1 9 2 . 1 6 8 . 3 . 2
11 verb 3

In essence the configuration file is the same as the one of the local VPN server.
The only difference is the entry for the route directive. It is not pointing
to the EC2 network (10.0.0.0/8) with the cloud-sided server (192.168.3.1)
as gateway, but to the local network (192.168.2.0/24) using the local VPN
server (192.168.3.2) as gateway. Furthermore the client AMI requires another
keypair to connect.

4.5 Initiating the VPN Infrastructure

With a prepared infrastructure and ready set up servers and instances it is
now possible to establish the new VPN manually. This is done in three steps
described here:

• Starting the cloud sided server.

• Establishing the tunnel.

• Adding instances to the local network.

At last it is explained how the VPN can be shut down.

4.5.1 Starting the Cloud-Sided Server

The cloud-sided server is the heart of the new subnet and is therefore the
first machine to be started. With a correct configuration described in the
chapter above it is sufficient to launch an instance of the appropriate AMI
in the VPN-related security group:

$ ec2−run−i n s t an c e s ami−858463 ec \
−g VPNgroup −k gsg−keypa i r

Alternatively this can be done with other tools like Elasticfox or CloudStudio
as well. During the instance’s boot process, OpenVPN is started as daemon
and running in the background. Now the instance is running and listening
on port 1194 for connecting clients.

37

Initiating the VPN Infrastructure 38

4.5.2 Establishing the Tunnel

That followed the local VPN server can connect to the cloud-sided server and
establish the tunnel. Here OpenVPN can be run as daemon as well. The
OpenVPN service is started by the following command:

/ etc / i n i t . d/openvpn s t a r t

4.5.3 Adding Cloud Instances to the Local Network

Now that the two servers are running the EC2 instances can be added to
the new local subnet. The AMIs described in section 4.4 are defined to start
OpenVPN on boot time and therewith to connect to the cloud-sided VPN
server automatically. Hence it is sufficient to launch an instance of the AMI
in the correct security group ether with a graphical suer interface or in the
command line:

$ ec2−run−i n s t an c e s ami−e69c7b8f \
−g VPNgroup −k gsg−keypa i r

The tunnel and routing is initiated automatically and the instance should be
reachable via its assigned tun0 IP address. In this example it is an IP address
between 192.168.3.3 and 192.168.3.255. If a VPN instance should be removed
from the VPN infrastructure it is sufficient to terminate it like every EC2
instance. There are no further steps to be done.

4.5.4 Shutting down

If the VPN infrastructure is no longer used, all machines running in the
security group VPNgroup should be shut down and the OpenVPN process on
the local VPN server should be stopped. This command returns a list of all
running VPN instances:

$ ec2−desc r ibe−i n s t an c e s

The single instances can now be terminated:

$ ec2−terminate−i n s t an c e s <in s tance−ID a> <in s tance−ID b>
. . . <in s tance−ID n>

To make sure that all instances are terminated it is recommended to run the
ec2-describe-instances command once again.

On a Unix-like operating system the VPN infrastructure can be shut
down with one single command:

$ ec2−terminate−i n s t an c e s $ (ec2−desc r ibe−i n s t an c e s \
| grep VPNgroup −A 2 \
| grep −o −E ’ [ˆ kmr] i \−([a−z] | [0 − 9]) {8} ’)

38

Initiating the VPN Infrastructure 39

This filters the instance IDs from the output of the ec2-describe-instances
command and forwards it to ec2-terminate-instances. This shuts down
all instances running in the VPNgroup, including the cloud-sided VPN server.

39

Chapter 5

Analysis

After discussing the concept and its realization this chapter pays attention
to the result’s efficiency and benefit.

5.1 EC2 Instances and VPN

It was a clear aim to realize a site-to-site VPN, which turned out as not
practicable. This is caused mainly by the lack of an accessible standard
gateway for the EC2 instances. The first attempt for this VPN concept
consisted of a VPN server in the local network and one in EC2’s network,
performing the VPN tunnel and managing the routing. It was planned to
make the EC2 instances available in the local network by adding a route
command to the cloud-sided server and another one that adds it as gateway
to the local network. In a common site-to-site VPN even these steps would
not be necessary. The routing through the VPN tunnel would then be done
by the network’s standard gateway, which is in this case managed by Amazon.
Amazon’s security measures to prevent packet sniffing might be very effective
– in this case they are an obstacle.

5.1.1 The Network Address Translation Attempt

An alternative solution was searched in Network Address Translation. It
succeeded to perform an IP masquerading on the cloud-sided server, what
made the EC2 instances reachable from the local network. Although the in-
stances were then still not capable to connect machines in the local network
(e.g. 192.168.2.0/24). The IP masquerding on the cloud-sided server lets all
forwarded packets appear like they were emitted by itself. Thus they are
forwarded in the EC2 network and reach their destination. This was realized
through iptables commands:

40

EC2 Instances and VPN 41

$ modprobe i p t a b l e s n a t
$ i p t a b l e s −t nat −A POSTROUTING −s 192 . 168 . 0 . 0/16 \
−−out−i n t e r f a c e eth0 −j MASQUERADE

Attempts to manipulate packets in the backward direction through desti-
nation network translation (DNAT) were not pursued because this design
respects the security measures taken by Amazon and does not try to work
around them. It would have been a big effort build up an VPN infrastruc-
ture where every instance address needs to be translated three times: The
IP masquerading from the local machines to the EC2 instances, the destina-
tion network address translation vice versa and a full nat on the cloud-sided
server to make them appear in the local network.

5.1.2 General Experience with EC2

EC2 turned out to be easy and comfortable to handle. It is still labeled beta,
which does not mean that it is not reliable, but that it is still evolving quickly.
During four months of Thesis work EC2 announced service level agreements,
changed the pattern of instance’s internal DNS name, an EU availability zone
was added and Windows-based AMIs were provided.

41

Chapter 6

Summary

6.1 Conclusion

Within EC2 there are restrictive network related security measures taken by
Amazon. This causes extra effort to set up a VPN environment. Although,
after considering these special circumstances, a feasible VPN interconnection
can be established. Due to the performance loss for IP traffic, send through
the tunnel, this constrains, like in other VPNs, the use of EC2 instances in
the local area network. The failure of ethernet-bridging is a deficit that might
not be resolved in near future. This might be due to the specific situation
where packet sniffing needs to be prevented or because of issues implicated
by the used virtualization technology.

6.2 Future Perspective

Cloud computing is a young technology that offers new opportunities. Es-
pecially when it is offered as a service to customers it is an inexpensive way
for short-term computing solutions. The possibility to run cloud instances in
the local network represents an another interesting aspect. With the combi-
nation of cloud computing and VPN in mind, it would be a benefit to have
a cloud computing environment with a small subnet for each customer as an
extra service. This might be an additional security aspect as well.

42

Bibliography

[1] Nicholas Carr. The Big Switch: Rewiring the World, from Edison to
Google. W. W. Norton, January 2008. ISBN: 978-0-393-06228-1.

[2] Fran Berman, Anthony Hey, and Geoffrey Fox. Grid Computing: Making
The Global Infrastructure a Reality. John Wiley & Sons, April 2003.
ISBN: 978-0-470-85319-1 (HB).

[3] Hewlett-Packard Labs Milojicic Dejan. Cloud computing: Interview
with russ daniels and franco travostino. IEEE Internet Computing,
12(5):7, 2008. DOI: 10.1109/MIC.2008.97 ISSN: 10897801.

[4] Brian Hatch Oleg Kolesnikov. Building Linux virtual private networks
(VPNs).
New Riders Publishing, Indianapolis, IN, USA, 2002. ISBN: 1-57870-
266-6.

[5] Paul Ferguson and Geoff Huston. What is a vpn. Whitepaper, Apr.
1998. DOI: 10.1.1.28.972.

[6] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear.
Address Allocation for Private Internets. RFC 1918 (Best Current Prac-
tice), February 1996.

[7] Amazon web services: Overview of security processes.
Security Whitepaper URL: http://aws.amazon.com, Nov. 2008.

[8] James Murty. Programming S3, Ec2, Sqs, and Fps. O’Reilly Media,
Inc, Sebastopol, 2008. ISBN: 0596515812.

[9] Amazon Web Services LLC. Amazon Elastic Compute Cloud Developer
Guide, 2008-05-05 edition, May 2008. Amazon EC2 (API Version 2008-
05-05).

[10] Amazon Simple Storage Developer Guide API version 2006-03-01, 03
2006.

43

http://aws.amazon.com

BIBLIOGRAPHY 44

[11] Amazon web services home page. URL: http://aws.amazon.com, Jan.
2009.

[12] Simson L. Garfinkel. An evaluation of amazon’s grid computing services:
Ec2, s3 and sqs. Technical report, Center for Research on Computa-
tion an Society Harvard University. URL: ftp://ftp.deas.harvard.edu/
techreports/tr-2007.html.

[13] Website Elasticfox EC2 plugin for the Firefox Browser, 2008.
URL: http://sourceforge.net/projects/elasticfox/
last visited 2.1.2009.

[14] Website CloudStudio Graphical User Interfache for EC2, 2008.
URL: http://www.service-cloud.com/
last visited 2.1.2009.

[15] P. Srisuresh and K. Egevang. Traditional IP Network Address Translator
(Traditional NAT). RFC 3022 (Informational), January 2001.

[16] L. Andersson and T. Madsen. Provider Provisioned Virtual Private
Network (VPN) Terminology. RFC 4026 (Informational), mar 2005.

[17] R. Braden. Requirements for Internet Hosts - Communication Layers.
RFC 1122 (Standard), October 1989. Updated by RFCs 1349, 4379.

[18] Website Vtun, 2009.
URL: http://vtun.sourceforge.net
last visited 2.1.2009.

[19] H. Zimmermann. Osi reference model–the iso model of architecture for
open systems interconnection. IEEE Transactions on Communications,
28(4):425–432, 1980.
URL: http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1094702.

[20] Website OpenVPN, 2009.
URL: http://openvpn.net
last visited 2.1.2009.

[21] W. Simpson. The Point-to-Point Protocol (PPP). RFC 1661 (Standard),
July 1994. Updated by RFC 2153.

[22] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008.

[23] S. Kent and K. Seo. Security Architecture for the Internet Protocol.
RFC 4301 (Proposed Standard), December 2005.

44

http://aws.amazon.com
ftp://ftp.deas.harvard.edu/techreports/tr-2007.html
ftp://ftp.deas.harvard.edu/techreports/tr-2007.html
http://sourceforge.net/projects/elasticfox/
http://www.service-cloud.com/
http://vtun.sourceforge.net
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1094702
http://openvpn.net

BIBLIOGRAPHY 45

[24] Niels Ferguson and Bruce Schneier. A cryptographic evaluation of ipsec.
Technical report, 2000.

[25] Website Openswan.
URL: http://www.openswan.org/
last visited 2.1.2009.

[26] Website Cohesive Flexible Technologies Corp, 2008.
URL: http://www.cohesiveft.com/vpncubed/.

[27] Website VcubeV Open Source Project, 2008.
URL: http://www.cohesiveft.com/Developer/.

[28] Service Level Agreement for EC2, 10 2008.
URL: http://aws.amazon.com/ec2-sla/
last visited 2.1.2009.

[29] C. Perkins. IP Encapsulation within IP. RFC 2003 (Proposed Standard),
October 1996.

[30] Website Openswan Wiki, 2009.
URL: http://wiki.openswan.org/index.php/Openswan/install
last visited 2.1.2009.

[31] D. Plummer. Ethernet Address Resolution Protocol: Or Converting
Network Protocol Addresses to 48.bit Ethernet Address for Transmission
on Ethernet Hardware. RFC 826 (Standard), November 1982. Updated
by RFC 5227.

[32] P. Vixie, O. Gudmundsson, D. Eastlake 3rd, and B. Wellington. Secret
Key Transaction Authentication for DNS (TSIG). RFC 2845 (Proposed
Standard), May 2000. Updated by RFC 3645.

[33] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk.
Internet X.509 Public Key Infrastructure Certificate and Certificate Re-
vocation List (CRL) Profile. RFC 5280 (Proposed Standard), May 2008.

[34] Neil Smyth. Xen virtualization essentials. Technical report, June 2008.
http://www.virtuatopia.com.

45

http://www.openswan.org/
http://www.cohesiveft.com/vpncubed/
http://www.cohesiveft.com/Developer/
http://aws.amazon.com/ec2-sla/
http://wiki.openswan.org/index.php/Openswan/install
http://www.virtuatopia.com

Glossary

Amazon Kernel Images (AKI)

AMI images can not be build with a customized kernel and rely on
predefined kernel images. During the launch of an instance it is possible
to chose between several predefined Amazon Kernel Images.

APT Package Management System

The Advanced Packaging Tool (APT) is an open source tool that sim-
plifies the process of managing software packages. It provides amongst
others routines to install, uninstall, search or update software packages
and is used by Debian and its derivates.

ARP

The Address Resolution Protocol (ARP) is used to translate a IP ad-
dress to a host’s link layer (hardware) address, which is also known as
MAC address. ARP is defined in the RFC 826 [31]

Certification Authority

A certification authority (CA) is an entity that provides digital certifi-
cates for the use by other parties. A certification authority is also an
example for the trusted third party concept.

DNS

The Domain Name Service (DNS) is a protocol that translates domain
names to IP addresses. Domain names are easier to handle for humans
than IP addresses.

Dynamic DNS

Dynamic DNS is a technique that allows a networked device to let a
domain name server change the active DNS configuration. Mostly this
is used to allocate dynamic IP addresses to a fixed DNS entry. Dynamic
DNS is defined in RFC 2845 [32]

46

Glossary 47

EC2 Compute Units

EC2 Compute Units define the processing power which can be expected
from each instance. Due to the XEN Technology, the measure is merely
split up in two categories: “moderate” and “high”.

Failover Technology

The failover technology switches from one server that became unavail-
able to a secondary server that takes over the role of the failed one.
Usually the two servers are monitoring each other via a hartbeat.

HMAC algorithm

A Hash Message Authentication Code (HMAC), is used to authenticate
messages. It is calculated using an algorithm involving a cryptographic
hash function combined with a secret key. HMAC may be used to
verify both, the data integrity and the authenticity of a message simul-
taneously.

Lease Time

In the dynamic mode DHCP provides the client a lease on an IP address
for a period of time. This could range from hours to months, depending
on the stability of the network. The DHCP client can request renewal
of the lease on its current IP address any time before the lease expires.

Loopback Device

In Unix-like operating systems, a loop device is a pseudo-device that
makes a file accessible as a block device. A loop device must be con-
nected to an existing file in the filesystem to be usable. If the file
already contains a file system, it may then be mounted like a disk
device.

MAC Address

A Media Access Control Address (MAC Address), also known as Eth-
ernet Hardware Address is a quasi-unique identifier assigned to network
interface cards by the manufacturer for identification.

Man-in-the-Middle Attack

The man-in-the-middle attack is a form of active eavesdropping in cryp-
tography. The attacker initiates independent connections to the vic-
tims by relaying messages between them and making them believe that
they are talking to each other over a private connection. In fact the
conversation is controlled by the attacker.

47

Glossary 48

NAT Traversal

When IP packets are crossing gateways or firewalls that are translating
private IP addresses into public IP addresses (NAT) this is called NAT
traversal.

OpenSolaris Operating System

OpenSolaris is an Unix-based open source operating system, based on
Solaris from Sun Microsystems.

Packet Forwarding

Describes the relaying of packets in a computer network from one net-
work segment to another by nodes. In Unix-based operating systems
packet forwarding is turned off by default and must be enabled when
the host is intended to run as a router or gateway.

Packet Sniffing

Packet sniffing can be regarded as eavesdropping of network packets
destined for other hosts. Here it is necessary to run the ethernet in-
terface card in promiscuous mode. Usually the tools used for packet
sniffing are common network analyzing programs.

Promiscuous Mode

A network interface running in promiscuous mode lets all received traf-
fic pass to the CPU rather than just the packets that are destined to it.
Setting up a tunnel device with a different IP address is not equivalent
to promiscuous mode.

SLA

A Service Level Agreement (SLA) is an agreement between a customer
and a service provider. In this case it means that a customer receives a
Service Credit if the annual uptime percentage for drops under 99,95%
(approximated 4.5 hours per year) [28].

Tcpdump

A Tcpdump is a common packet sniffer. It allows the user to intercept
and display (mostly TCP/IP) packets being transmitted or received at
the host’s network device. In this thesis project it was used to ensure
that network packets, sent from another host, are received. This is
helpful to localize the point where ping-ICMP packets get lost.

48

Glossary 49

WSDL

WSDL is a language, based on XML, that provides a model for de-
scribing Web services. It does not depend on a programming language
or a specific protocol.

X.509 Certificates

The X.509 standard is defined by the International Telecommunication
Union (ITU). It describes a public key infrastructure and is a common
standard that is described in RFC 5280 [33].

Xen virtual machine monitor

Xen is a virtual machine monitor for several CPU architectures, ini-
tially created by the University of Cambridge Computer Laboratory
and is now developed and maintained by a company called XenSource.
With Xen it is possible to run different guest operating systems on the
same computer hardware concurrently. The Xen hypervisor is used to
manage the Xen system’s structure as the most privileged layer [34].

XOR Cipher

The XOR cipher is a quite primitive cipher that operates after the
following principles A⊕ 0 = A, A⊕A = 0 (B ⊕A)⊕A = B ⊕ 0 = B.
It is used in cases where no particular security is needed.

49

List of Abbreviations

ACL Access Control List
AKI Amazon Kernel Image
AMI Amazon Machine Image
API Application Programming Interface
CA Certification Authority
DHCP Dynamic Host Control Protocol
DSA Digital Signature Algorithm
DSL Digital Subscriber Line
EBS Elastic Block Store
EC2 Elastic Compute Cloud
GRE Generic Routing Encapsulation
HTML Hypertext Markup Language
HTTP Hyper Text Transfer Protocol
ICMP Internet Control Message Protocol
IP Internet Protocol
IPsec Internet Protocol Security
NAT Network Address Translation
NetBIOS Network Basic Input Output System
OSI Model Open Systems Interconnection Reference Model
PHP PHP Hypertext Preprocessor
PPP Point to Point Protocol
RARP Reverse Address Resolution Protocol
REST Representational State Transfer
RFC Request for Comments
RPC Remote Procedure Call
RSA Rivest Shamir Adleman Algorithm
S3 Simple Storage Service
scp secure copy
SHA Secure Hash Algorithm
SMTP Simple Mail Transfer Protocol
SSH Secure Shell
SSL Secure Socket Layer
TCP Transfer Control Protocol

50

Glossary 51

TLS Transport Layer Security
UDP User Datagram Protocol
VPN Virtual Private Network
XML Extensible Markup Language

51

Index

AKI Amazon Kernel Image, 21
AMI Amazon Machine Image, 5
AMI bundles, 5, 8, 26, 36
ARP, 13, 27
availability zone, 4

configuration file, 16, 22, 31, 33

DHCP, 7, 13, 34
dynamic DNS, 22

Elastic Block Store, 6
elastic IP address, 8, 22
end-to-site VPN, 10
environment variable, 8
ethernet bridging, 21
ethernet bridging mode, 13, 14, 16,

21, 27

firewall, 8, 24, 25, 27

GRE, 13, 15, 21
grid computing, 2

IP broadcast, 27
IP routing mode, 13, 16, 21
IPsec, 13, 15, 16, 21

Linux kernel, 15, 21

MAC address, 8, 33
Multi-singlepoint VPN, 19, 21, 26
Multi-singlepoint VPN, 12

NAT, 7, 11, 21, 40

OpenVPN, 16, 17, 21, 27, 29
OSI model, 12–15

private networks, 3, 7, 11
promiscuous mode, 14

Query interface, 9

Remote Access VPN, 10
REST webservice, 6
Roadwarrior VPN, 10

S3 bucket, 6, 22, 36
security group, 8, 20, 22, 26, 28, 32,

37, 38
Service Level Agreements, 18
site-to-site VPN, 11
SOAP webservice protocol, 6, 9
SSH, 7, 8, 16, 21, 32
SSH keypair, 7, 8, 16, 32
SSL, 15, 16, 21

TAP virtual device, 14, 21
TCP/IP model, 12–14
TLS, 15
TUN virtual device, 13, 21, 24, 25,

27, 34

utility computing, 1, 2

X.509 certificate, 7, 9, 16, 29, 35
Xen virtual machine monitor, 4, 5

52

DECLARATION

I hereby declare that I have written the Bachelor’s Thesis on my own and
have used no other than the stated sources and aids.

Bernd Hietler

Date

	Title Page
	Abstract
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Problem Definition
	1.2 Cloud Computing
	1.3 Virtual Private Networks (VPN)

	2 The Technology's State of the Art
	2.1 Elastic Compute Cloud (EC2)
	2.1.1 The Elastic Compute Cloud Service
	2.1.2 Amazon Machine Images
	2.1.3 The Amazon Simple Storage Service
	2.1.4 EC2 Security Aspects
	2.1.5 EC2 Network Aspects
	2.1.6 EC2 Tools and Utilities
	2.1.7 Programming Interfaces

	2.2 Virtual Private Network Aspects
	2.2.1 VPN Topology Types
	2.2.2 VPN Architectures
	2.2.3 Protocols for Encryption and Transport
	2.2.4 VPN Implementations

	2.3 Cloud Computing and Local Networks
	2.3.1 On-Demand VPN Server as Internet Gateway
	2.3.2 Cohesive Flexible Technologies Corporation

	3 The Concept
	3.1 Determining the VPN Interconnection
	3.1.1 The Topology
	3.1.2 The Architecture
	3.1.3 The Implementation

	3.2 The Result
	3.2.1 The Concept Topology
	3.2.2 Details
	3.2.3 Technical Specifications

	4 The Implementation
	4.1 Preparing the Infrastructure
	4.1.1 Limitations
	4.1.2 Prerequisites in the Local Network
	4.1.3 Defining a Security Group

	4.2 Preparing the Local VPN Server
	4.2.1 Set up a GNU/Linux Server
	4.2.2 Install OpenVPN
	4.2.3 Create the Public Key Infrastructure
	4.2.4 Enable Packet Forwarding
	4.2.5 Set up and Start OpenVPN

	4.3 Preparing the Server in the Cloud
	4.3.1 Select an AMI and Launch an Instance
	4.3.2 Set up the Dynamic DNS Service
	4.3.3 Install OpenVPN
	4.3.4 Enable Packet Forwarding
	4.3.5 Set up and start OpenVPN
	4.3.6 Test the Connection
	4.3.7 Bundle the Instance to a new AMI

	4.4 Prepare EC2 Client Template Images
	4.5 Initiating the VPN Infrastructure
	4.5.1 Starting the Cloud-Sided Server
	4.5.2 Establishing the Tunnel
	4.5.3 Adding Cloud Instances to the Local Network
	4.5.4 Shutting down

	5 Analysis
	5.1 EC2 Instances and VPN
	5.1.1 The Network Address Translation Attempt
	5.1.2 General Experience with EC2

	6 Summary
	6.1 Conclusion
	6.2 Future Perspective

	Bibliography
	Glossary
	List of Abbreviations
	Index
	Declaration

